
Technical Report 2010-002

The Algebraic Path Problem on

the Cell/B.E. Processor

Kazuya Matsumoto, Stanislav G. Sedukhin

November 30, 2010

Graduate Department of Computer and Information Systems
The University of Aizu

Tsuruga, Ikki-Machi, Aizu-Wakamatsu City
Fukushima, 965-8580 Japan

Technical Report 2010-002

Title:

Authors:

Key Words and Phrases:

Abstract:

Report Date: Written Language:

Any Other Identifying Information of this Report:

Distribution Statement:

Supplementary Notes:

The University of Aizu
Aizu-Wakamatsu

Fukushima 965-8580
Japan

11/30/2010 English

First Issue: 10 copies

Kazuya Matsumoto, Stanislav G. Sedukhin

The Algebraic Path Problem on the Cell/B.E. Processor

algebraic path problem, all-pairs shortest paths problem, Cell Broadband Engine, performance
evaluation, parallel computing

The Algebraic Path Problem (APP) unifies well-known matrix, graph, and language problems, such as matrix

inversion, all-pairs shortest paths (APSP), maximum capacity paths (MCP), minimum spanning tree, generation

of regular languages, etc., into a single algorithmic scheme. The difference between APP instances is in the

underlying algebraic structure. This paper explores the APP and presents an implementation of a block

algorithm for solving the APP on the Cell Broadband Engine (Cell/B.E.) heterogeneous multicore processor.

The block APP algorithm spends the most computing time in a block matrix-matrix multiply-add (MMA)

operation in different algebras. In our APP algorithm, a fast dense MMA operation in linear (+,×)-algebra is

utilized. The MMA implementation on the Cell/B.E. needs only a single fused multiply-add (FMA) instruction

to obtain a single short-vector (+,×)-result in one cycle. APP instances such as APSP and MCP problems are

based on (min, +)- and (max, min)-algebras, respectively, which are different from the linear (+,×)-algebra, and

require three and four instructions to obtain a single short-vector result in three and four cycles. Because of

that, the maximum sustained performance for MMA operation on Cell/B.E. is 152 Gflop/s whereas for APSP

and MCP are 50.7 Gflop/s and 38.1 Gflop/s, respectively.

Manuscript submitted to Journal of Information Processing (IPSJJIP)

Distributed Parallel Processing Laboratory

The Algebraic Path Problem on

the Cell/B.E. Processor

Kazuya Matsumoto Stanislav G. Sedukhin

Abstract

The Algebraic Path Problem (APP) unifies well-known matrix, graph,

and language problems, such as matrix inversion, all-pairs shortest paths

(APSP), maximum capacity paths (MCP), minimum spanning tree,

generation of regular languages, etc., into a single algorithmic scheme.

The difference between APP instances is in the underlying algebraic

structure. This paper explores the APP and presents an implementa-

tion of a block algorithm for solving the APP on the Cell Broadband

Engine (Cell/B.E.) heterogeneous multicore processor. The block APP

algorithm spends the most computing time in a block matrix-matrix

multiply-add (MMA) operation in different algebras. In our APP algo-

rithm, a fast dense MMA operation in linear (+,×)-algebra is utilized.

The MMA implementation on the Cell/B.E. needs only a single fused

multiply-add (FMA) instruction to obtain a single short-vector (+,×)-

result in one cycle. APP instances such as APSP and MCP problems

are based on (min,+)- and (max, min)-algebras, respectively, which are

different from the linear (+,×)-algebra, and require three and four in-

structions to obtain a single short-vector result in three and four cycles.

Because of that, the maximum sustained performance for MMA opera-

tion on Cell/B.E. is 152 Gflop/s whereas for APSP and MCP are 50.7

Gflop/s and 38.1 Gflop/s, respectively.

1 Introduction

The Algebraic Path Problem (APP) is a general framework which unifies sev-

eral solution procedures for a number of problems into a single algorithmic

1

formulation. Specific instances of the APP include problems from linear al-

gebra (e.g. computing the inverse of a real non-singular matrix), from graph

theory (e.g. the transitive and reflexive closure, the all-pairs shortest paths

problem, the minimum-cost spanning tree problem, etc.) as well as from lan-

guage processing (e.g. generation of regular languages). These problems are

among the most important computational problems in computer science and

engineering area. The applications of the APP can be found in bioinformatics,

network routing, control theory, and many others. As a result, the APP has

been widely studied [1, 2, 3, 4, 5, 6]. The difference between many instances of

the APP is in the underlying algebraic structure expressed as a closed semiring.

There are many algorithms for solving the different instances of the APP.

Among APP algorithms, a simple algorithm is well-known because this uni-

fied algorithm is generalization of Warshall’s algorithm for transitive closure,

Floyd’s algorithm for all-pairs shortest-paths problem [7], and the Gauss-

Jordan method for matrix inversion [8]. The APP algorithm consists of triple-

nested loop as in the dense matrix-matrix multiply-add (MMA) algorithm,

except it has more strict data dependencies such that the outermost loop can-

not be interchanged.

To effectively use memory hierarchy in state-of-art processors, blocking

algorithm is necessary to relax the required memory bandwidth and to obtain

the high performance. Block Floyd-Warshall (FW) algorithm and its data

dependency have been discussed in [9, 10, 11, 7]. The blocking approach can

be applied to solve other APP instances. The most compute intensive part of

the block FW algorithm is the MMA in different semirings. This fact enables

us to leverage a highly tuned MMA implementation for efficient computing of

the APP.

In this paper, we extend the previously designed block FW algorithm [7]

to other instances of APP and show a parallel implementation of the unified

block APP algorithm on the Cell Broadband Engine processor (Cell/B.E.).

The Cell/B.E. is a heterogeneous multicore processor consisting of a general

purpose processor, the Power Processor Element (PPE), and eight short-vector

SIMD processors, so called the Synergistic Processor Elements (SPEs).

As other contribution, this paper discusses how different optimization tech-

niques affect the performance on the Cell/B.E. The techniques include com-

2

puting with a block data layout, overlapping the computation with the data

communication, parallelizing the block algorithm, and reducing the number of

required registers in matrix “multiply-add” kernel.

The remainder of this paper is organized as follows. In Section 2, the

overview of the APP and its applications are given, and then the scalar and

block algorithms for the APP are introduced. In Section 3, the architecture

of the Cell/B.E. is described in details. In Section 4, the discussion how the

block algorithm for the APP is implemented on the Cell/B.E. is conducted. In

Section 5, the results of performance evaluation are presented. Finally, Section

6 describes conclusions and future work.

2 Algebraic Path Problem

2.1 Notations and Definitions

Let us consider a weighted graph G = (V,E, w) with a set of n vertices V =

{1, 2, . . . , n}, a set of edges E ⊆ V ×V , and a weight function w : E → S which

assigns to each edge a weight from a special algebraic structure referred to as

closed semiring (S,⊕,⊗, ∗, 0̄, 1̄) where S is a set of elements; the “addition”

⊕ and the “multiplication” ⊗ are binary operations (S×S → S); ∗ is a unary

operation (S → S) called closure; and the zero 0̄ and the unity 1̄ are constants

in S. The further discussion including the properties of the closed semiring

can be found in [12, 3, 13, 14].

Let a path p in G be an arbitrary sequence of vertices p = (i, k1, k2, . . . , km, j)

which begins with i and ends with j. We then define a weight w(p) of the path

p as the product of all edges of the path:

w(p) = w(i, k1)⊗ w(k1, k2)⊗ · · · ⊗ w(km, j)

Let P (i, j) denote the set of all paths from i to j. Then the algebraic path

problem (APP) is to compute the “sum” di,j of P (i, j) for all (i, j) pairs:

di,j =
⊕

p∈P (i,j)

w(p). (1)

The APP can also be formulated in a matrix form [12, 3] by introducing

a matrix closed semiring (Sn×n,⊕,⊗, ∗, Ō, Ī) over the scalar closed semiring

3

(S,⊕,⊗, ∗, 0̄, 1̄), where Sn×n is a set of n× n matrices; the matrix “addition”

⊕ and the matrix “multiplication” ⊗ are binary operations (Sn×n × Sn×n →
Sn×n); ∗ is a unary operation (Sn×n → Sn×n) called closure of a matrix ; the

zero matrix Ō the elements of which are all 0̄s, and a unity matrix Ī with 1̄s

on the main diagonal and 0̄s otherwise, are constant matrices.

We associate an initial matrix A = (ai,j) in Sn×n with the weighted graph

G, where

ai,j =





w(i, j) if (i, j) ∈ E,

0̄ if (i, j) 6∈ E.
(2)

The matrix operations of “addition” and “multiplication” are defined as

in linear algebra: if A = (ai,j) and B = (bi,j) are n × n matrices, then the

“addition” and the “multiplication” are

A⊕B = (ci,j), where ci,j = ai,j ⊕ bi,j;

A⊗B = (ci,j), where ci,j =
⊕n

k=1 ai,k ⊗ bk,j.

When we define an n × n matrix D = (di,j) of the elements specified in

(1), we get the matrix formulation for the APP in terms of the matrix A, as

follows:

D = A∗ =
⊕

m≥0

Am = Ī ⊗ A⊗ (A⊕ A)⊗ (A⊕ A⊕ A)⊗ · · · . (3)

The matrix A∗, which is the closure of matrix A, can be rewritten as follows:

A∗ = Ī ⊕ A⊕ A2 ⊕ A3 ⊕ · · ·
= Ī ⊕ A⊗ (Ī ⊕ A⊕ A2 ⊕ A3 · · ·) (4)

= Ī ⊕ A⊗ A∗. (5)

Then the APP in the matrix form is to solve (5) for A∗. Note that for any

idempotent semiring1, the infinite sum (4) converges to a finite sum, because

An+i = An for i > 0.

2.2 Scalar algorithm

We denote the initial elements of a matrix A by a
(0)
i,j = ai,j. The following

recurrence equation (6) is used to update the elements of a matrix A(k) = (a
(k)
i,j)

1An idempotent semiring holds a property of a = a⊕ a [15].

4

for k = 1 to n do

a
(k)
k,k ← (a

(k−1)
k,k)∗; % “Black” element update

for all 1 ≤ i ≤ n do

a
(k)
i,k ← a

(k−1)
i,k ⊗ a

(k)
k,k; % “Red” elements update

end for

for all 1 ≤ i ≤ n (i 6= k) do

for all 1 ≤ j ≤ n (j 6= k) do

a
(k)
i,j ← a

(k)
i,k ⊗ a

(k−1)
k,j ⊕ a

(k−1)
i,j ; % “White” elements update

end for

end for

for all 1 ≤ j ≤ n do

a
(k)
k,j ← a

(k)
k,k ⊗ a

(k−1)
k,j ; % “Blue” elements update

end for

end for

Figure 1: Scalar algorithm for solving the algebraic path problem

(1 ≤ i, j ≤ n on each iteration k = 1, 2, · · · , n).

a
(k)
i,j ←





(a
(k−1)
i,j)∗ if i = j = k;

(a
(k−1)
k,k)∗ ⊗ a

(k−1)
k,j if i = k 6= j;

a
(k−1)
i,k ⊗ (a

(k−1)
k,k)∗ ⊗ a

(k−1)
k,j ⊕ a

(k−1)
i,j if i 6= k and j 6= k;

a
(k−1)
i,k ⊗ (a

(k−1)
k,k)∗ if j = k 6= i.

(6)

We can cast the recurrence (6) into a scalar algorithm shown in Fig. 1. As

can be seen from (6) and Fig. 1, the algorithm consists of four kinds of updates

on each k-th iteration (k = 1, 2, · · · , n). The algorithm updates the “black”

element (pivot) first. Then it updates the “red” elements (pivot column), the

“white” elements (non-pivot), and the “blue” elements (pivot row) in order.

For any idempotent semiring, the closure is a
(k)
k,k = (a

(k−1)
k,k)∗ = 1̄ and the

pivot is a
(k−1)
k,k = 1̄ for any k ∈ {1, 2, · · · , n}. This fact indicates that a

(k)
k,j =

(a
(k−1)
k,k)∗ ⊗ a

(k−1)
k,j ≡ a

(k−1)
k,j for i = k, and a

(k)
i,k = a

(k−1)
i,k ⊗ (a

(k−1)
k,k)∗ ≡ a

(k−1)
i,k

for j = k. Thus, for the idempotent semiring, the scalar algorithm in Fig. 1

can be simplified as it is shown in Fig. 2. It is clear that the total number of

combined (⊕,⊗) operations in the simplified algorithm is

N scalar
(⊕,⊗) (n) = n3 − (2n2 − n) = n(n− 1)2. (7)

5

for k = 1 to n do

for all 1 ≤ i, j ≤ n (i 6= k and j 6= k) do

a
(k)
i,j ← a

(k−1)
i,k ⊗ a

(k−1)
k,j ⊕ a

(k−1)
i,j ;

end for

end for

Figure 2: Scalar algorithm for solving the APP in an idempotent semiring

2.3 Instances of the Algebraic Path Problem

We can define different instances of the algebraic path problem by specializing

closed semiring (S,⊕,⊗, ∗, 0̄, 1̄). Several instances are detailed in following:

• Transitive and reflexive closure: the weights ai,j are taken from S ⊆
{0, 1}. ⊕ = ∨,⊗ = ∧, a∗ = 1 for all a in S, 0̄ = 0, and 1̄ = 1. The

closure of a matrix A = (ai,j) gives the transitive and reflexive closure.

• All-pairs shortest paths (APSP): the weights ai,j are taken from S ⊆
R+ ∪ {∞}, where R+ is the set of positive real numbers. ⊕ = min,⊗ =

+, a∗ = 0 for all a in S, 0̄ = ∞, and 1̄ = 0. The closure of a matrix

A = (ai,j) gives the all-pairs shortest paths.

• Critical paths (CRP), also called maximum cost paths : the weights ai,j

are taken from S ⊆ R+ ∪ {+∞,−∞}, where R+ is the set of positive

real numbers. ⊕ = max,⊗ = +, a∗ = 0 for all a in S, 0̄ = −∞, and

1̄ = 0. The closure of a matrix A = (ai,j) gives the maximum cost paths,

or +∞ if there are paths of unbounded cost [16].

• Maximum capacity paths (MCP), also called tunnel problem or network

capacity problem [1]: the weights ai,j are taken from S ⊆ R+∪{∞}, where

R+ is the set of positive real numbers. ⊕ = max,⊗ = min, a∗ = ∞ for

all a in S, 0̄ = 0, and 1̄ = ∞. The closure of a matrix A = (ai,j) gives

the maximum capacity paths.

• Maximum reliability paths (MRP): the weights ai,j are taken from S ⊆
{0, 1} and can be considered as reliabilities of the information transport

between the two connected vertices. ⊕ = max,⊗ = ×, a∗ = 1 for all a in

S, 0̄ = 0, and 1̄ = 1. The closure of a matrix A = (ai,j) gives the most

reliability paths.

6

• Minimum cost spanning tree (MST): the weights ai,j = aj,i are taken

from S ⊆ R+ ∪ {∞}, where R+ is the set of positive real numbers.

⊕ = min,⊗ = max, a∗ = 0 for all a in S, 0̄ = ∞, and 1̄ = 0. Let

D = (di,j) is the closure of a matrix A = (ai,j), then its entries di,j = a
(0)
i,j

are the edges of the minimum spanning tree[17].

• Inverse of a real non-singular matrix : the weights ai,j are taken from

S ⊆ R. ⊕ and ⊗ are the conventional arithmetic + and × operations on

R respectively, a∗ = 1/(1− a) for all a in R with a 6= 1 (a∗ is undefined

for a = 1), 0̄ = 0, and 1̄ = 1. The closure of a matrix A = (ai,j) gives

(I − A)−1 (see [3],[8]).

2.4 Block algorithm

Block algorithms are widely known to be more efficient in many computing en-

vironments than the corresponding scalar algorithms because block algorithms

enable to relax the required memory bandwidth. Figure 3 shows a block al-

gorithm for solving the algebraic path problem. In the block algorithm, the

initial n× n matrix A is divided into an N ×N matrix of b× b blocks where

N = n/b and b (2 ≤ b ≤ n/2) is the blocking factor. For simplicity, but

without loss of generality, the matrix size is assumed to be in multiples of the

blocking factor b.

On each K-th iteration (K = 1, 2, · · · , N) of the outermost loop, the block

algorithm works as follows: it first updates the “black” block AK,K (line 2) by

applying the closure operation to the b× b subproblem AK,K , which is solved

by the scalar algorithm of Fig. 2, then it updates N − 1 “red” blocks AI,K

(lines 3-5) and N − 1 “blue” blocks AK,J (lines 6-8), and, finally, it updates

(N − 1)2 “white” blocks AI,J (lines 9-13).

On each iteration, the “black” block update requires b(b−1)2 (= N scalar
(⊕,⊗) (b)

in (7)) “multiply-add” operations; the “red” blocks update and the “blue”

blocks update require b3(n/b − 1) “multiply-add” operations each; and the

“white” blocks update requires b3(n/b− 1)2 “multiply-add” operations. Thus

the total number of “multiply-add” operations is

Nblock
(⊕,⊗) (n, b) = b(b− 1)2 + 2b3(n/b− 1) + b3(n/b− 1)2

= n(n2 − 2b + 1). (8)

7

1: for K = 1 to N do

2: A
(K)
K,K ← (A

(K−1)
K,K)∗; % “Black” block update

3: for all 1 ≤ I ≤ N (I 6= K) do

4: A
(K)
I,K ← A

(K−1)
I,K ⊗ A

(K)
K,K ⊕ Ō; % “Red” blocks update

5: end for

6: for all 1 ≤ J ≤ N (J 6= K) do

7: A
(K)
K,J ← A

(K)
K,K ⊗ A

(K−1)
KJ ⊕ Ō; % “Blue” blocks update

8: end for

9: for all 1 ≤ I ≤ N (I 6= K) do

10: for all 1 ≤ J ≤ N (J 6= K) do

11: A
(K)
I,J ← A

(K)
I,K ⊗ A

(K)
K,J ⊕ A

(K−1)
I,J ;% “White” blocks update

12: end for

13: end for

14: end for

Figure 3: Block algorithm for solving the algebraic path problem

The total number of block operations is

Ntotal(n, b) = n/b(1 + 2(n/b− 1) + (n/b− 1)2) = (n/b)3.

On the other hand, the number of block operations for updating “red” (R),

“blue” (B), and “white” (W) blocks is

NRBW(n, b) = n/b(2(n/b− 1) + (n/b− 1)2) = (n/b)3 − n/b.

Then, the ratio is

ρ =
NRBW
Ntotal

× 100% = (1− 1

(n/b)2
)× 100%.

The ratio shows that, when (n/b) is relatively large, the block algorithm

spends the most computing time to update “red”, “blue”, and “white” blocks;

see Fig. 4, where the problem size n is measured in multiples of b.

The “red”, “blue” and “white” blocks are updated using matrix-matrix

“multiply-add” (MMA) in different algebraic semirings. As it was shown, the

MMA operation is the most compute-intensive part (kernel) in the block algo-

rithm. Hence the computational performance of algorithm strongly depends

on the performance of MMA operation.

8

10b 20b 30b 40b 50b
0

20

40

60

80

100

(%)

Problem size (n)

Figure 4: Ratio of the number of operations for updating “red”, “blue”, and

“white” blocks compared to the total number

Note that here the block algorithm is used for a solution of the APP with

idempotent semiring, nevertheless, it can also be used with several modifica-

tions as a solution for non-idempotent semirings [8]. For instance, to compute

the inverse of a matrix, we have to make the following modifications to the

algorithm in Fig. 3:

• replacing the statement 4 with AI,K ← −AI,K
⊗

AK,K in the “red” blocks

update;

• permuting the order of updates from “black → red → blue → white”

to “black → red → white → blue”, and changing the superscripts of

statements accordingly;

• using the scalar algorithm (Fig. 1), instead of the simplified algorithm

(Fig. 2), for the “black” block update.

3 Cell Broadband Engine

The Cell Broadband Engine (Cell/B.E.) is a heterogeneous multicore proces-

sor. The Cell/B.E. consists of one Power Processor Element (PPE), eight

9

Synergistic Processor Elements (SPEs), a Memory Interface Controller (MIC),

a Cell Broadband Engine Interface (BEI), and an Element Interconnect Bus

(EIB) [18, 19].

PPE is a 64-bit Power Architecture based general purpose processor. PPE

usually acts as the control center of the Cell/B.E.; it distributes computational

workloads among SPEs and coordinates an entire operation.

SPEs are 128-bit RISC processors with a dual-issue pipelined four-way

SIMD unit. Each SPE contains a Synergistic Processor Unit (SPU) and a

Memory Flow Controller (MFC) 2. SPU does not have data caches, but instead,

has its own 256 kB local memory called local store (LS). The register file of

SPU contains 128 128-bit registers. Each SPE can access the host memory and

the LS of other SPEs with direct memory access (DMA) transfers. The single-

precision floating point peak performance of each SPU at 3.2 GHz clock speed

is 25.6 Gflop/s because each SPU can compute eight single-precision floating

point operations per clock with the four-way SIMD fused multiply-add (FMA)

instruction [20].

EIB is the communication path between all the components of Cell/B.E.

and is composed of four data rings, where the theoretical peak data bandwidth

at 3.2 GHz is 204.8 GByte/s. The peak data bandwidth between the XDR

DRAM memory (host memory) and EIB is, however, 25.6 GByte/s.

4 Porting the APP Algorithm to the Cell/B.E.

4.1 Parallelization

The block algorithm (Fig. 3) has been implemented on the Cell/B.E. so that

the PPE updates the “black” block and then the SPEs update the “red”,

“blue” and “white” blocks. It is essential for high-speed computation consider-

ing how to parallelize the algorithm for the heterogeneous multi-core processor.

The block algorithm sees an initial n × n matrix A = (ai,j) as the n/b × n/b

matrix A = (AI,J) consisting of b× b blocks, where n is the problem size and

2The term “SPU” refers to the instruction set or the unit that executes the instruction

set, and the term “SPE” refers generally to functionality of any part of the SPE processing

element, including the MFC [18].

10

b is the block factor. Hence we can parallelize the algorithm in terms of b× b

independent block as a unit of computational workloads.

To correctly parallelize the block algorithm, the synchronization between

all the processing elements at regular time-points is needed. The algorithm

has data dependencies between colored blocks updates: the “red” and “blue”

blocks depend on the “black” block; and the “white” blocks depend on both the

“red” and “blue” blocks. Thus, we need to make at least two synchronization

points: the first point is after the “black” block update; and the second point is

before the “white” blocks update. To implement this barrier synchronization,

we use a mailbox mechanism, which offers a 32-bit data passing between PPE

and SPEs [18]. At either of the synchronization point, each SPE sends a

notification mail to the PPE, and after the PPE receives all the notification

mails, the PPE sends an acknowledgment mail to each SPE.

The “black” block update for K-th iteration (K = 2, 3, · · · , N) cannot be

started till the AK,K in “white” blocks is updated for the previous (K − 1)-th

iteration. This means that PPE can immediately start updating the “black”

block when an SPE finishes updating the AK,K block for the previous iteration.

For that reason, we have implemented the scheduling that the AK,K block is

updated in the beginning of all “white” blocks updates.

4.2 Block size and data layout

In the block algorithm, a given n × n matrix is partitioned with b × b square

blocks. This raises the question of the optimal block size for given architecture.

We use 64× 64 as the block size for the implementation. The size of block for

data in single precision is 16 kB, which is the maximum data size to transfer

with one DMA instruction; also, each the 16 kB block can be fitted in the

256 kB local store of SPE. Moreover, if block data layout [21] is used, which

is discussed below, a whole block can be transferred with one DMA transfer

instruction. Notice that for other existing block matrix algorithms on the

Cell/B.E., it is a common practice to use blocks of 64 × 64 elements [22, 23,

24, 25].

A two-dimensional array of matrix data in C programming language is

usually stored in row-major data layout (RDL), where all row elements are

11

1 2 3 4

9 10 11 12

17 18 19 20

25 26 27 28

5 6 7 8

13 14 15 16

21 22 23 24

29 30 31 32

33 34 35 36

41 42 43 44

49 50 51 52

57 58 59 60

37 38 39 40

45 46 47 48

53 54 55 56

61 62 63 64

n

n

1 2 5 6

3 4 7 8

17 18 21 22

19 20 23 24

9 10 13 14

11 12 15 16

25 26 29 30

27 28 31 32

33 34 37 38

35 36 39 40

49 50 53 54

51 52 55 56

41 42 45 46

43 44 47 48

57 58 61 62

59 60 63 64

b

b

n

n
(a) Row-major Data Layout (b) Block Data Layout

Figure 5: (a) Row-major Data Layout and (b) Block Data Layout; the number

in each layout indicates the order of memory assignment.

stored continuously (see Fig. 5a). The block algorithm, however, deals with

blocks of a matrix data; hence the implementation requires to process the data

as the matrix of blocks. For such data access pattern to block data, it is often

effective to use a special data layout called as block data layout (BDL) [26, 21]

(see Fig. 5b).

4.3 Matrix-matrix multiply-add in different semirings

4.3.1 Differences between MMA and APP

As it was discussed above, the most compute intensive part of the block APP

algorithm is in the “red”, “blue”, and “white” blocks updates. We can uti-

lize an existing fast matrix-matrix multiply-add implementation for updating

the blocks. The differences of the MMA implementation and the APP imple-

mentation are types and the number of instructions to obtain corresponding

“multiply-add” result. The MMA implementation only requires a single fused

multiply-add (FMA) instruction while other APP implementations need more

number of instructions. The number and the type of instructions needed de-

pend on an instance of the APP; each instance needs different kinds of algebraic

operations, which include (+,×) operation for matrix inversion, (min, +) for

shortest paths, (max, +) for critical paths, (max, min) for maximum capacity

paths, (max,×) for maximum reliability paths, and (min, max) for spanning

12

tree. In the SPU of the Cell/B.E., the standard addition and the multiplication

operations are implemented by a single instruction (fa and fm assembly in-

struction [27], respectively), but the minimum or maximum operation require

two instructions (combination of fcgt and selb for each). For example, the

all-pairs shortest paths (APSP) problem requires three instructions to imple-

ment the addition operation and the minimum operation. The fact indicates

that the APSP implementation on Cell/B.E. will take three times as many

clock cycles as the MMA implementation; in other words, we can expect that

the SPU’s theoretical peak performance for APSP would be 8.533 (=25.6/3)

Gflop/s. Also, the maximum capacity paths (MCP) problem requires four

instructions to implement a minimum operation and a maximum operation.

The fact indicates that the MCP implementation will take four times as many

clock cycles as the MMA implementation; in other words, we can expect that

the SPU’s theoretical peak performance for MCP would be only 6.4 (=25.6/4)

Gflop/s.

4.3.2 MMA implementations on the Cell/B.E.

Currently, there are three available MMA implementations on the Cell/B.E.

[28, 24, 23]. Each implementation uses the block size of 64× 64 and is deeply

tuned by using four-way short-vector SIMD instructions as well as loop un-

rolling and software pipelining. The first MMA implementation was reported

by Chen et al. [28]; it is written in C programming language and is distributed

with IBM Cell SDK as a demo program. The other two implementations are

written in an assembly language: Hackenberg reported a deeply unrolled im-

plementation [24]; and Kurzak et al. [23] reported an ultimate MMA imple-

mentation for the SPU.

We have evaluated the performances of all the three implementations on

the experimental environment explained in Section 5.1. Table 1 shows the

summary of the different MMA implementations. The implementation by

Kurzak et al. [23] is the best one from both aspects of the performance and

register usage; hence, we have selected this MMA implementation to be utilized

for our APP algorithm.

In fact, we have modified the selected MMA implementation so that the

register usage is reduced. We need it because less register usage is desirable

13

Table 1: Performance of matrix multiply-add on one SPU

Algorithm Performance % Register

(Gflop/s) of the peak usage

Chen et al. [28] 23.77 92.85 69

Hackenberg [24] 25.40 99.23 71

Kurzak et al. [23] 25.49 99.56 69

This paper 25.44 99.38 49

for the APP implementation which requires more additional registers to store

intermediate results. The modified MMA implementation uses only 49 regis-

ters although the obtained performance of 25.44 Gflop/s is almost same as in

[23] (see Table 1). When we utilize the modified MMA algorithm for our APP

implementation, it uses 65 registers; 16 additional registers are consumed to

keep the intermediate results.

5 Performance Evaluation

5.1 Evaluation environment

The examination results presented here were measured on the Cell/B.E. pro-

cessor of a PlayStation 3 (PS3). In the PS3, six of eight SPEs are only available

because the other two are disabled to improve chip yields, and to run some op-

erations on the background of PS3 Linux. We have installed Yellow Dog Linux

6.2 as the operating system and used Cell SDK 3.1 as the software develop-

ment environment. Cell SDK 3.1 contains gcc version 4.1.1 based compilers

(ppu-gcc and spu-gcc). As the optimization options for compilation, we used

-O3 for the PPE program and -Os for the SPE program. The input data

has been generated by Erdős-Rényi random graph generator in GTgraph [29].

The performance in Gflop/s reported in this section is calculated by using the

following formula:

Performance [Gflop/s] =
Num. of floating point operations [flops]

Exectution time [ns]

=
2Nblock

(⊕,⊗) (n, b)

Exec. time
=

2n(n2 − 2b + 1)

Exec. time
.

14

Each minimum or maximum operation is counted as a single floating-point

operation; in other words, any (⊕,⊗)-operation is counted as two flops, which

is a common practice [30, 31, 32].

5.2 Performance of a 64 × 64 matrix-matrix “multiply-

add” in different semirings on one SPE

This section shows the performance of a 64×64 matrix-matrix “multiply-add”

in different semirings on one SPE. Recall that the MMA in linear algebra with

(+,×)-algebra delivers 25.44 Gflop/s (99.38% of the peak). The performance

of a 64×64 MMA for all-pairs shortest paths (APSP), critical paths (CRP), and

maximum reliability paths (MRP) problem delivers 8.502 Gflop/s each (33.21%

of the peak). As it was estimated in Section 4.3.1, the sustained performance

is close to one-third of the peak. On the other hand, the performance of a

64×64 MMA for maximum capacity paths (MCP) and minimum spanning tree

(MST) problem delivers 6.378 Gflop/s (24.91% of the peak). The sustained

performance of one-fourth of the peak is also coincident with the previous

estimation.

For comparison, we have also measured the performance of a 64×64 matrix-

matrix “multiply-add” on PPE. PPE achieves only 1.801 Gflop/s and 1.625

Gflop/s for APSP, CRP and MRP, and for MCP and MST, respectively. PPE

has a similar SIMD instruction set to SPE, and the potential peak performance

of PPE is the same as the SPE; the achieved performance is, however, several

times less than on SPE. The low performance is considered to be due to the

less number of registers; the available 32 128-bit vector registers of PPE are

not enough to keep all block data elements in the register file.

5.3 Performance on PPE and SPEs

Figure 6 shows the performance plot of the block algorithm for the different

APP instances on PPE and six SPEs; the experiments were carried out for the

problem sizes in multiples of 64 (blocking factor). Three instances, all-pairs

shortest paths (APSP), critical paths (CRP), and maximum reliability paths

(MRP) problems, have the same time of solution on the Cell/B.E. The other

two instances, maximum capacity paths (MCP) and minimum spanning tree

15

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000 6000 7000

P
er

fo
rm

an
ce

 (
G

flo
p/

s)

Problem size (n)

APSP, CRP, MRP
MCP, MST

Figure 6: Performance in Gflop/s for the APP instances using PPE and 6

SPEs

(MST) problems, have also the same time of solution on the Cell/B.E.

The performance for relatively small problem size on any number of SPEs

is not high. This is due to the lower performance of PPE which updates the

“black” block, in addition to the synchronization overhead between PPE and

SPEs. On the other hand, when matrix size n is very large (in our case,

n ≥ 6912), the performance degrades drastically due to the memory shortage

that results in many page faults. In fact, the number of page faults increases

to many hundred thousands for such large matrix size from almost zero for

the smaller sizes3. 256 MB of the host memory of PS3 is known as a limiting

factor for the high performance computing [33].

Table 2 shows the maximum performance using PPE and different number

of SPEs. Comparing the performance of six SPEs with one SPE, the speedup

ratio is around 5.98, i.e. we have almost linear speedup increasing.

We have made additional experiments to see the effects of two kinds of

optimization techniques, which are multi-buffering (MBUF) and computation

with a block data layout (BDL) 4. The multi-buffering technique enables us to

3The numbers of page faults was counted by Linux time command.
4The performance shown in Fig. 6 and Table 2 are results of using both the optimization

techniques.

16

Table 2: Maximum performance in Gflop/s using PPE and SPE(s)

Instances 1 SPE 2 SPEs 3 SPEs 4 SPEs 5 SPEs 6 SPEs

APSP, MRP, CRP 8.47 16.92 25.37 33.82 42.25 50.68

MCP, MST 6.37 12.74 19.06 25.41 31.75 38.09

Table 3: Execution time in milliseconds with and without optimizations

Problem size

Instatnces Optimization 1024 2048 3072 4096 5120

APSP, MRP, CRP

- 76 531 1695 4671 7918

BDL 62 399 1296 3097 6024

MBUF 59 374 1213 2994 5558

BDL + MBUF 56 356 1159 2727 5313

MCP, MST

- 89 641 2046 5454 9556

BDL 76 510 1666 3967 7738

MBUF 74 488 1592 3758 7312

BDL + MBUF 71 470 1538 3625 7068

overlap the computation with the communication, so that the communication

latency can be hidden. BDL was explained in Section 4.2. Table 3 shows the

results of the experiments. Both of the optimizations increase the performance.

5.4 Related Work

There has been a number of researches related to block algorithms for solving

the APP. The researches has been done, in particular, to accelerate the per-

formance for solving the all-pairs shortest paths (APSP) problem because the

APSP is the most popular among all APP instances.

Venkataraman et al. [9] presented a block FW algorithm. Park et al.

[10, 11] implemented a recursive version of the block FW algorithm. Han et

al. [30] reported an implementation of block FW algorithm with auto-tuning

technique. Bondhugula et al. [34, 35] proposed an FPGA-based method for a

17

block FW algorithm. Matsumoto and Sedukhin [7] presented a block algorithm

for APSP on the Cell/B.E., and, independently, Vinjamuri and Prasanna [36]

also published a research result for APSP with a blocking approach but a

different scheduling strategy. In addition, Tadonki [37] showed a ring pipelined

algorithm for APSP on the Cell/B.E.

The Graphical Processing Unit (GPU) computing is a popular solution to

obtain high performance, and several APSP implementations exist for Nvidia

GPUs [38, 39, 40, 41, 42, 43]. Buluç et al. implemented a recursive block FW

algorithm [42]; Okuyama et al. compared the recursive block FW algorithm

and their iterative block algorithm, and showed the implementation of the iter-

ative algorithm runs around 4% faster than that of the recursive algorithm in

the case of relatively small problem sizes of 256 ≤ n ≤ 1024. The performance

of some implementations on GPUs is over 100 Gflop/s which is more than

twice as high as our result on the Cell/B.E. It is because some GPUs contain

hundreds of processing elements and, as the result, have higher computational

power although the clock speed is lower than in Cell/B.E..

Compared with GPUs, a winning side of the Cell/B.E. is the programma-

bility of the SPEs thanks to the unique embedded local store and the large

register file. This programmability makes the performance of the computa-

tional kernel (64× 64 “MMA”) very close to the peak performance whereas it

is impossible to obtain such high efficiency on current GPUs.

6 Conclusion

In this paper, we have extended a block Floyd-Warshall algorithm to the in-

stances of Algebraic Path Problem (APP) for idempotent semirings and have

showed an efficient algorithm implementation on the Cell/B.E. The results of

performance evaluation show that parallel implementation of the block APP

algorithm, which is rich in matrix-matrix “multiply-add” operations, is well

suited for the Cell/B.E., and the achieved performance is near the estimated

peak.

We have also shown the effectiveness of using the optimization techniques.

The implementation of the block algorithm with block data layout is faster than

that of row-major layout. The evaluation result also shows that overlapping

18

computations and data transfers by utilizing multi-buffering technique is very

effective.

As future work, we will port and evaluate the high performance algorithms

to multi-core CPUs and many-core GPUs, and cluster systems with a number

of such processors. Alternately, our presented block APP algorithm computes

only the distances for all-pairs of vertices; however, finding additionally the

paths would also be important for some practical applications of the APP.

Therefore, another future work includes a design of efficient methods to com-

pute both the paths and the distances.

References

[1] Fink, E.: A Survey of Sequential and Systolic Algorithms for the Alge-
braic Path Problem, Technical Report cs-92-37, Department of Computer
Science, University of Waterloo (1992).

[2] Rote, G.: Path problems in graphs, Computing Supplementum, No. 7, pp.
155–198 (1990).

[3] Rote, G.: A systolic array algorithm for the algebraic path problem (short-
est paths; matrix inversion), Computing, Vol. 34, No. 3, pp. 191–219
(1985).

[4] Rajopadhye, S., Tadonki, C. and Risset, T.: The algebraic path problem
revisited, Proceedings of the 5th European Conference on Parallel Com-
puting (Euro-Par 1999), LNCS, Vol. 1685, Springer, pp. 698–707 (1999).

[5] Sedukhin, S.: Design and Analysis of Systolic Algorithms for the Algebraic
Path Problem, Computers and Artificial Intelligence, Vol. 11, No. 3, pp.
269–292 (1992).

[6] Litvinov, G. L., Maslov, V. P., Rodionov, A. Y. and Sobolevski, A. N.:
Universal algorithms, mathematics of semirings and parallel computa-
tions, CoRR, abs/1005.1252, http://arxiv.org/abs/1005.1252v1 (2010).

[7] Matsumoto, K. and Sedukhin, S. G.: A Solution of the All-Pairs Shortest
Paths Problem on the Cell Broadband Engine Processor, IEICE Trans-
actions on Information and Systems, Vol. E92-D, No. 6, pp. 1225–1231
(2009).

[8] Yokoyama, S., Matsumoto, K. and Sedukhin, S. G.: Matrix Inversion on
the Cell/B.E. Processor, Proceedings of 11th IEEE International Confer-
ence on High Performance Computing and Communications (HPCC-09),
pp. 148–153 (2009).

[9] Venkataraman, G., Sahni, S. and Mukhopadhyaya, S.: A blocked all-pairs
shortest-paths algorithm, Journal of Experimental Algorithmics, Vol. 8, p.
2.2 (2003).

19

[10] Park, J.-S., Penner, M. and Prasanna, V. K.: Optimizing graph algo-
rithms for improved cache performance, IEEE Transactions on Parallel
and Distributed Systems, Vol. 15, No. 9, pp. 769–782 (2004).

[11] Penner, M., Park, J.-S. and Prasanna, V. K.: Optimizing graph algo-
rithms for improved cache performance, Proceedings of 16th International
Parallel and Distributed Processing Symposium, Washington, DC, USA,
IEEE Comput. Soc, pp. 309–318 (2002).

[12] Lehmann, D. J.: Algebraic structures for transitive closure, Theoretical
Computer Science, Vol. 4, No. 1, pp. 59–76 (1977).

[13] Moller, F.: A survey of systolic systems for solving the algebraic path
problem, Technical Report CS-85-2 2, University of Waterloo Computer
Science Department (1985).

[14] Sedukhin, S. G., Miyazaki, T. and Kuroda, K.: Orbital Systolic Algo-
rithms and Array Processors for Solution of the Algebraic Path Problem,
IEICE Transactions on Information and Systems, Vol. E93-D, No. 3, pp.
534–541 (2010).

[15] Mohri, M.: Semiring frameworks and algorithms for shortest-distance
problems, Journal of Automata, Languages and Combinatorics, Vol. 7,
No. 3, pp. 321–350 (2002).

[16] Lehmann, D. J.: Algebraic structures for transitive closure, Theoretical
Computer Science, Vol. 4, No. 1, pp. 59–76 (1977).

[17] Maggs, B. M. and Plotkin, S. A.: Minimum-cost spanning tree as a path-
finding problem, Information Processing Letters, Vol. 26, No. 6, pp. 291–
293 (1988).

[18] IBM Corporation: Cell Broadband Engine Programming Handbook, Ver-
sion 1.1 (2007).

[19] IBM Redbooks: Programming the Cell Broadband Engine Architecture:
Examples and Best Practices, Vervante, California, USA (2008).

[20] Mueller, S., Jacobi, C., Oh, H.-J., Tran, K., Cottier, S., Michael, B.,
Nishikawa, H., Totsuka, Y., Namatame, T., Yano, N., Machida, T. and
Dhong, S.: The Vector Floating-Point Unit in a Synergistic Processor El-
ement of a CELL Processor, 17th IEEE Symposium on Computer Arith-
metic (ARITH’05), pp. 59–67 (2005).

[21] Prasanna, V. K., Park, N. and Hong, B.: Tiling, block data layout, and
memory hierarchy performance, IEEE Transactions on Parallel and Dis-
tributed Systems, Vol. 14, No. 7, pp. 640–654 (2003).

[22] Kurzak, J. and Dongarra, J.: Implementation of mixed precision in solv-
ing systems of linear equations on the Cell processor, Concurrency and
Computation: Practice and Experience, Vol. 19, No. 10, pp. 1371–1385
(2007).

20

[23] Kurzak, J., Alvaro, W. and Dongarra, J.: Optimizing matrix multiplica-
tion for a short-vector SIMD architecture CELL processor, Parallel Com-
puting, Vol. 35, No. 3, pp. 138–150 (2009).

[24] Hackenberg, D.: Fast Matrix Multiplication on Cell (SMP) Systems,
http://www.tu-dresden.de/zih/cell/matmul (2009).

[25] Saxena, V., Agrawal, P., Sabharwal, Y., Garg, V. K., Kuruvilla, V. A. and
Gunnels, J. A.: Optimization of BLAS on the Cell Processor, Proceedings
of the 15th International Conference on High Performance Computing
(HiPC 2008), LNCS, Vol. 5374, Springer, pp. 18–29 (2008).

[26] Prasanna, V. K., Park, N. and Hong, B.: Analysis of memory hierarchy
performance of block data layout, Proceedings of International Conference
on Parallel Processing, Washington, DC, USA, IEEE Comput. Soc, pp.
35–44 (2002).

[27] IBM Corporation: SPU Assembly Language Specification, Version 1.6
(2007).

[28] Chen, T., Raghavan, R., Dale, J. N. and Iwata, E.: Cell Broadband
Engine Architecture and its first implementation: A performance view,
IBM Journal of Research and Development, Vol. 51, No. 5, pp. 559–572
(2007).

[29] Madduri, K. and Bader, D. A.: GTgraph: A suite of synthetic random
graph generators, https://sdm.lbl.gov/˜kamesh/software/GTgraph.

[30] Han, S.-C., Franchetti, F. and Püschel, M.: Program generation for the
all-pairs shortest path problem, Proceedings of the 15th international con-
ference on Parallel architectures and compilation techniques - PACT ’06,
New York, ACM Press, pp. 222–232 (2006).

[31] Buluç, A., Gilbert, J. R. and Budak, C.: Gaussian Elimination Based
Algorithms on the GPU, Technical Report UCSB/CS-2008-15, CS De-
partment, University of California, Santa Barbara, USA (2008).

[32] Gaeke, B., Husbands, P., Li, X., Oliker, L., Yelick, K. and Biswas, R.:
Memory-intensive benchmarks: IRAM vs. cache-based machines, Proceed-
ings of 16th International Parallel and Distributed Processing Symposium,
IEEE Comput. Soc, pp. 290–296 (2002).

[33] Kurzak, J., Buttari, A., Luszczek, P. and Dongarra, J.: The PlayStation
3 for High-Performance Scientific Computing, Computing in Science &
Engineering, Vol. 10, No. 3, pp. 84–87 (2008).

[34] Bondhugula, U., Devulapalli, A., Dinan, J., Fernando, J., Wyckoff, P.,
Stahlberg, E. and Sadayappan, P.: Hardware/Software Integration for
FPGA-based All-Pairs Shortest-Paths, Proceedings of the 14th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM ’06), IEEE, pp. 152–164 (2006).

[35] Bondhugula, U., Devulapalli, A., Fernando, J., Wyckoff, P. and Sadayap-
pan, P.: Parallel FPGA-based All-Pairs Shortest-Paths in a Directed

21

Graph, Proceedings of 20th IEEE International Parallel & Distributed
Processing Symposium, IEEE (2006).

[36] Vinjamuri, S. and Prasanna, V. K.: Transitive closure on the cell broad-
band engine: A study on self-scheduling in a multicore processor, Pro-
ceedings of the 2009 IEEE International Symposium on Parallel and Dis-
tributed Processing, IEEE Computer Society, pp. 1–11 (2009).

[37] Tadonki, C.: Ring pipelined algorithm for the algebraic path problem on
the CELL Broadband Engine, 1st Workshop on Applications for Multi
and Many Core Architectures (2010).

[38] Micikevicius, P.: General Parallel Computation on Commodity Graphics
Hardware: Case Study with the All-Pairs Shortest Paths Problem, Proc.
Int’l Conf. Parallel and Distributed Processing Techniques and Applica-
tions (PDPTA’04), pp. 1359–1365 (2004).

[39] Harish, P. and Narayanan, P. J.: Accelerating large graph algorithms
on the GPU using CUDA, 14th International Conference on High-
Performance Computing (HiPC 2007), LNCS, Vol. 4873, Springer, pp.
197–208 (2007).

[40] Katz, G. J. and Kider Jr, J. T.: All-pairs shortest-paths for large graphs on
the GPU, Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS
symposium on Graphics hardware, Aire-la-Ville, Switzerland, Switzerland,
Eurographics Association, pp. 47–55 (2008).

[41] Okuyama, T., Ino, F. and Hagihara, K.: A Task Parallel Algorithm
for Computing the Costs of All-Pairs Shortest Paths on the CUDA-
Compatible GPU, Proceedings of 2008 IEEE International Symposium on
Parallel and Distributed Processing with Applications, IEEE, pp. 284–291
(2008).

[42] Buluç, A., Gilbert, J. R. and Budak, C.: Solving Path Problems on the
GPU, Parallel Computing, No. 7000012980 (2009).

[43] Okuyama, T., Ino, F. and Hagihara, K.: Fast Blocked Floyd-Warshall
Algorithm on the GPU [in Japanese], IPSJ Transactions on Advanced
Computing Systems, Vol. 3, No. 2, pp. 57–66 (2010).

22

